Generalized Riordan arrays

نویسندگان

  • Weiping Wang
  • Tianming Wang
چکیده

In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the classical Riordan arrays. Based on the definition, the iteration matrices related to the Bell polynomials are special cases of the generalized Riordan arrays and the set of iteration matrices is a subgroup of the Riordan group. We also study the relationships between the generalized Riordan arrays and the Sheffer sequences and show that the Riordan group and the group of Sheffer sequences are isomorphic. From the Sheffer sequences, many special Riordan arrays are obtained. Additionally, we investigate the recurrence relations satisfied by the elements of the Riordan arrays. Based on one of the recurrences, some matrix factorizations satisfied by the Riordan arrays are presented. Finally, we give two applications of the Riordan arrays, including the inverse relations problem and the connection constants problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences

Using the language of Riordan arrays, we define a notion of generalized Bernstein polynomials which are defined as elements of certain Riordan arrays. We characterize the general elements of these arrays, and examine the Hankel transform of the row sums and the first columns of these arrays. We propose conditions under which these Hankel transforms possess the Somos-4 property. We use the gener...

متن کامل

Riordan Arrays Associated with Laurent Series and Generalized Sheffer-Type Groups

A relationship between a pair of Laurent series and Riordan arrays is formulated. In addition, a type of generalized Sheffer groups is defined using Riordan arrays with respect to power series with non-zero coefficients. The isomorphism between a generalized Sheffer group and the group of the Riordan arrays associated with Laurent series is established. Furthermore, Appell, associated, Bell, an...

متن کامل

Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations

We study the properties of three families of exponential Riordan arrays related to the Stirling numbers of the first and second kind. We relate these exponential Riordan arrays to the coefficients of families of orthogonal polynomials. We calculate the Hankel transforms of the moments of these orthogonal polynomials. We show that the Jacobi coefficients of two of the matrices studied satisfy ge...

متن کامل

Generalized Stirling numbers, exponential Riordan arrays and orthogonal polynomials

We define a generalization of the Stirling numbers of the second kind, which depends on two parameters. The matrices of integers that result are exponential Riordan arrays. We explore links to orthogonal polynomials by studying the production matrices of these Riordan arrays. Generalized Bell numbers are also defined, again depending on two parameters, and we determine the Hankel transform of t...

متن کامل

Asymptotics for generalized Riordan arrays

A Riordan array is an infinite complex matrix (ars) of a certain type (see below for exact definitions). The Riordan array formalism has been much used recently to study combinatorial questions in analysis of algorithms and other areas. Most work has been concerned with “exact” results. In this article we discuss asymptotics of such arrays. We apply general machinery for deriving asymptotics of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008